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Abstract 

The  evolution of axisymmetric  equilibrium shapes of a rotating liquid drop can be 

extended  beyond  the  2-lobed shape bifurcation  point if the  rotating drop  is driven in  the 

n=2. axisymmetric  shape  oscillation (perturbation), where n is the  mode of oscillation. A 

reason for the  extended  stability of  the  perturbed  rotating drop is that  the  inertia of  the 

driven  axisymmetric  shape  oscillation suppresses growth of a natural  non-axisymmetric 

shape  fluctuation  which  leads to the  2-lobed  shape  bifurcation. The axisymmetric  shape of 

the drop eventually  bifurcates into either a 2- or 3-lobed  shape at a higher  bifurcation  point 

which is asserted to be  the  3-lobed  shape  bifurcation  point. 

PACS numbers: 47.55.D~ 
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The shape evolution of a  rotating  liquid drop subjected to an  increasing  angular velocity 

(or momentum)  has been a  subject of long-standing  interest  since it is related  to  various 

phenomena  ranging from atomic  nuclear fission to  planetary  rotation [ 1 I. When a  spherical 

liquid drop, held  together  only by surface tension, is  rotated  about  a  vertical axis, its shape 

evolves into a  family of axisymmetric  oblate  spherical  shapes. The gyrostatic  equilibrium 

shape  of the drop is determined by the force balance  between  the  capillary force created by 

the surface tension of the  curved drop surface and  the  centrifugal force. With  increasing 

angular  velocity, the drop is flattened  more  and  more  until  a  neutral  stability  point is 

reached (a bifurcation  point). By employing  a  method  of  moments,  Chandrasekhar  [2] 

showed that a family of  2-lobed  equilibrium shapes were  most  likely  evolved  from  the 

axisymmetric shape family at this bifurcation  point  which  was  denoted G$ (- 0.559) in  the 

normalized angular velocity  scale. - Brown  and  Scriven  [3]  extended  Chandrasekhar’s 

result by studying the three  dimensional  equilibrium shapes and  stability of rotating drops 

using  a  computer-aided  analytical  technique.  Brown-Scriven’s results are  summarized as 

follows: The neutral  stability points of the axisymmetric shapes for bifurcating into the 3- 

and  4-lobed shapes exist at higher angular  velocities. The bifurcation  points  are  basically 

the  same  whether the drop is rotating at constant  velocity or constant momentum. All 

axisymmetric shapes rotating  above SZ, are unstable to a  2-lobed shape perturbation.  The 

2-lobed shape family is only stable  when  the drop is rotating at constant  angular 

momentum. The 3-lobed shape family  bifurcates at G$ (- 0.707)’  but is unstable to a  2- 

lobed shape perturbation. The 4-lobed  shape  family  bifurcates at Q4 (- 0.753), but is 

unstable to both the 2- and 3-lobed  shape  perturbations  whether the drop is rotating  at 

constant angular velocity or constant  angular  momentum. 

Experimental  investigations of  rotating drops can  be  traced  back to Plateau’s  work [4] .in 

which  a  liquid drop is immersed in a  liquid of similar  density  and is driven by a  rotating 

shaft.  Plateau  observed  that  the drop evolved  through  a  sequence of shapes, axisymmetric, 

ellipsoidal  and  2-lobed shapes, and  eventually  broke  away  from the shaft.  Hateau’s 
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experimental setting roughly corresponds to the  Brown-Scriven analysis with  constant 

angular velocity. Subsequently, several  experimental  investigations  were  performed to test 

theoretical  predictions [5-8J. Wang et al. [5,8] performed  the  experiments  onboard  the 

Space Shuttle in which  a  microgravity  environment  was  realized.  Under  microgravity 

conditions, the drop deformation due to the  Earth  gravity is minimized to a  negligible  level; 

thus, the  experiment  can be performed  in the conditions which are assumed in  the theory. 

Wang et al's experimental setting consists of acoustic levitation  of  a drop in air and  exerting 

an acoustic torque on it, which corresponds to the  Brown-Scriven analysis with  constant 

angular momentum.  Wang et al. confirmed that the  experimental @ for spherical drops 

free from deformation closely  agreed  with the theoretical  prediction.  In addition, they also 

showed families of shape evolution diagram for initially  flattened drops, with the spherical 

drop as the limitingcase [8]. 

According to the Brown-Scriven analysis, the  axisymmetric shapes 'beyond SZ, are 

unstable to small fluctuations in shape, which grow  in  time;  thus, it seems impossible to 

experi.mentally observe the existence of C& and SL,. On the contrary, one of  the  present 

authors (E. Trinh) has observed  the "bed shape bifurcation  using an apparatus similar to 

the Plateau apparatus. As a  proof  of his observation, a photo of the 3-lobed drop is shown 

in  Figure 1 without describing details of the experimental  procedure. This observation  was 

made possible by rapidly  increasing  the angular velocity  of  the shaft passing through  the 2- 

lobed  bifurcation  point. The differential flow inside of the drop prevented  the  2-lobed 

shape to develop before  the angular velocity  reached  the  3-lobed  bifurcation point. As is 

seen  in  the figure, the drop is not isolated  but  supported by the  rotating shaft and  the disc 

and its lobs are bent  because  of drag created by the  host fluid. Applications of the  same 

technique to an isolated drop levitated in gas environments have  not  been successful. As an 

alternative, we  have  come up with  an  idea to apply  a  perturbation  which  is favorable for 

axisymmetric shapes and allows us to maintain  the  axisymmetric shapes beyond @. In 

this letter, we report  a  technique  which  can suppress the  2-lobed shape bifurcation and 
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maintain  the  axisymmetric shapes until the drop reaches  a  higher  bifurcation  point,  and 

present  evidence of 3-lobed shapes evolving at the  higher  bifurcation  point. 

Figure 2 shows  the  experimental  apparatus  originally  assembled for a  previous  study 171 

and  later  modified for the  present  investigation. The ultrasonic driver is operated at 

approximately 18 kHz and is used to generate  a  vertical  standing  wave  between  the  driver 

head and  the  reflector for levitating  a drop. Two broadband audio drivers (the second  one 

is  not shown) are  placed at the bottom comers of  the  chamber  and are facing each other at a 

90" angle.  These  drivers  are  operated at approximately 1.4 kHz and are used to generate 

lateral standing waves in the acoustic chamber. A torque is exerted on the drop by 

adjusting the  relative  phase of the lateral standing waves [9]. Two cameras are used  to 

record the images of the  levitated  drop.  Camera 1 is used to record the side  view of the 

drop which is generally  deformed into an oblate  spheroid  due to the  acoustic  pressure.  The 

images are used to determine the volume  and the aspect  ratio db,  where 'a and  b  are  the 

equatorial  and  polar  radii of the drop, respectively.  Camera  2 is set to look down the drop 

through the hole  made  on  the  refl'ector and is capable of capturing the images  up to 2000 

frames per  second.  Small air bubbles  deliberately  implanted  in  the drop as markers  are  used 

to determine  the  rotation  rate by reviewing the recorded  images frame by frame. The 

angular velocity  and  the  corresponding  radius are paired to construct the shape  evolution 

diagram. No active  temperature controls are employed,  but  the  temperature  inside of the 

chamber  remains  between 28 and 29 "C throughout  the  measurement. 

The  strategy for suppressing the  2-lobed  shape  bifurcation is to apply  a small 

axisymmetric  n=2  shape  oscillation to the  rotating drop, where n is the mode  of  the  shape 

oscillation  (perturbation). The idea of the  perturbed  rotating drop is  based on an 

expectation  that  the  inertia of a  driven  n=2  axisymmetric  shape  oscillation  prevents  growth 

of a  natural  non-axisymmetric  shape  fluctuation  that  leads to the 2-lobed bifurcation. In 

order to induce  the  n=2  shape  oscillation on the drop, we modulate  the  acoustic  pressure 

for levitating  the drop at an appropriate  frequency [ I O ,  1 1 1. A preliminary  experiment  with 
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pure  water drops was  not successful probably due to high surface tension  and low 

viscosity of water; therefore, we  prepared  a  solution  which  was  a  mixture of water (150 

cc), PhotoFlo (0.2 cc) and glycerin. PhotoFlo was  added to lower the surface tension 

value to 26 mN/m. The addition  of  glycerin  improved  the  stability of the  flattened drops. 

The drops of  the solution with 1.0 s & s 1.3 mm,  where, & is the radius of the 

equivalent  spherical drop, are mainly  used  in  the  present  investigation. However, it is 

observed that only the drops with the narrower  radius range, 1.2 < & < 1.3  mm are more 

likely to maintain the axisymmetric shapes beyond 4. A reason for this observation is the 

modulation frequency which is  set  at around 80 Hz. 

The results of the present  investigation are summarized  in Figure 3 as a plot of the 

normalized angular velocity, doo, vs. the normalized radius, L&,, where o is the 

angular velocity, oo = 2~r(8o/pF4,~)”* is the n=2 shape oscillation frequency of the drop 

with o being the surface tension and p the density, and %, is the  maximum length of the 

drop in the equatorial  plane. The open circles  represent the data  obtained by two drops (F4, 

= 1.0 and 1.3  mm)  which are rotated without the axisymmetric  n=2 shape perturbation  and 

used to determine the 2-lobed shape. bifurcation  point. The measurements were performed 

during both  increasing and decreasing  angular  momentum  conditions. The scattering of  the 

data is partially due to the difference in the aspect ratio  of the drops at rest.  When  the drop 

was  rotated  with the axisymmetric  n = 2 shape perturbation,  in  some cases, it started 

evolving into the  2-lobed shape at &, but the evolution  was  prematurely  terminated  and  the 

axisymmetric shape was  restored  and  maintained  until  it  reached  a  higher  bifurcation  point, 

GI,,. In other cases, bifurcation at & was not notable  and  the drop seemed to maintain  the 

axisymmetric shape until it reached at Q,,,. The  open  triangles  represent S2,, of 6 drops 

which are evolved into either the 2- or 3-lobed shapes. No drops bifurcated at angular 

velocities  between & and Q,. When  the drop evolved into the  2-lobed shape at a,.,, it 
rapidly  expanded due to excess angular momentum. The solid circles  represent  the  2-lobed 

shape drop after the  instantaneous expansion of  the shape bifurcated at Q,. The 3-lobed 
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shapes  observed in this  study  were  not gyrostatic equilibrium shapes, but  periodically 

changed as the drop oscillated. The solid  triangles  represent  the  evolution of  the  3-lobed 

shapes of the drops bifurcated at Q. The solid lines  are a partial  reproduction of Brown- 

Scriven’s shape evolution  diagram for rotating drops at constant angular momentum. As 

seen in the figure, the  experimental  data  are  poorly  represented by. the  theoretical curves. 

The  main  reason for this  disagreement is due to the drop flattening  which  is  unavoidable in 

ground-based  experiments. 

Figure 4 shows a sequence of  the  rotating drop with  the  3-lobed shapes. As is seen, 

these  3-lobed shapes are not gymstatic equilibrium  shapes  but  are constantly changing as 

the drop rotates. The sequence  approximately  represents  one  cycle of the  oscillation  and 

one third  of  the  rotation. The rotation  rate  and  the  oscillation  rate are approximately 26 

cycle/sec  and 80 Hz, respectively. The amplitude of the  oscillation is proportional to the 

modulation  amplitude  and  the drop shapes in the figure are  produced by a relatively  high 

amplitude  modulation.  In general, the 3-lobed shapes could  be  maintained for tens of 

seconds but  they  subsequently  evolved into the  2-lobed  shapes.  When  the  modulation  was 

turned off, the  3-lobed  shape  immediately  evolved into a 2-lobed shape. When  the  acoustic 

torque  was  gradually  reduced, in some occasions, we observed  that  the  2-lobed shapes 

evolved into the 3-lobed  shapes  and  then  the  axisymmetric shapes. We  tried  to  form  the 4- 

lobed shapes by extending  the  axisymmetric shape beyond Q, but  have  not  succeeded  yet. 

We have  shown  that a rotating  liquid drop can  maintain  the  axisymmetric shapes beyond 

SL, if the drop is  perturbed by the  axisymmetric  n=2  shape  oscillation  because  the  driven 

perturbation  prevents  the  2-lobed  shape  bifurcation.  However,  the drop eventually  reaches 

q, and  bifurcates  into  either  the  2-lobed shape or the  3-lobed shape. Although  the  shape 

evolution  diagram of initially flattened drops is  different  from  that of spherical drops, we 

can  reasonably  assert  that SL, corresponds to SZ, of spherical  drops  because  its relative 

position with respect to SZ, is  comparable to that of  the  theoretical curves. Lee et al. [12] 

have analyzed the  2-lobed  bifurcation  point  of  the  initially  flattened drops and  have shown 
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that G& shifts toward  lower  angular  velocity  as  the  initial  aspect  ratio of the  drop  increases. 

Although,  the  analysis  does not extend to the  3-lobed  bifurcation point, it is plausible to 

assume  that & exhibits  a  similar shift. Furthermore,  the  formation of the  5”obed  shapes at 

SZ, strongly  supports the present  assertion.  We  believe  that  the  3-lobed  shape  bifurcation 

initiates  the  3-lobed  shape  oscillation.  The  direct  comparison  with  the  Brown-Scriven 

prediction is possible  if the  experiment is performed  in  a  microgravity  environment  using 

an  apparatus  which is similar to the one used  by  Wang  et  a1.[8].  More  rigorous 

interpretation of the  present  results  requires  theoretical  analysis of the  bifurcation of the 

initially  flattened  drops  driven in a  shape  oscillation  (forced  perturbation).  We  speculate 

that  the  present  result is an example of more  general  bifurcation  conditions  which  determine 

the  mode of perturbation  that selectively  promotes or suppresses  particular  bifurcations . 

The  research  described  in this letter was carried  out  at  the  Jet  Propulsion  Laboratory, 

California  Institute of Technology, under  contract  with  the  National  Aeronautics  and  Space 

Administration. 
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Captions 

Figure 1 .  An  example of the  drop  rotating in the 3-lobed shape. 

Figure 2. Schematic  diagram of experimental  apparatus  showing  the  key  parts. 

Figure 3. Summary of the results plotted  in  the  normalized angular velocity vs. normalized 

radius  coordinates along with  the  theoretical  prediction. 

Figure 4. A sequence of a rotating  drop evolved at  the 3-lobed shape  bifurcation  point. 
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